Covariate Shift Adaptation for Structured Regression With Frank–Wolfe Algorithms
نویسندگان
چکیده
منابع مشابه
Mixture Regression for Covariate Shift
In supervised learning there is a typical presumption that the training and test points are taken from the same distribution. In practice this assumption is commonly violated. The situations where the training and test data are from different distributions is called covariate shift. Recent work has examined techniques for dealing with covariate shift in terms of minimisation of generalisation e...
متن کاملRobust Covariate Shift Regression
In many learning settings, the source data available to train a regression model differs from the target data it encounters when making predictions due to input distribution shift. Appropriately dealing with this situation remains an important challenge. Existing methods attempt to “reweight” the source data samples to better represent the target domain, but this introduces strong inductive bia...
متن کاملOn Covariate Shift Adaptation via Sparse Filtering
A major challenge in machine learning is covariate shift, i.e., the problem of training data and test data coming from different distributions. This paper studies the feasibility of tackling this problem by means of sparse filtering. We show that the sparse filtering algorithm intrinsically addresses this problem, but it has limited capacity for covariate shift adaptation. To overcome this limi...
متن کاملUnsupervised Domain Adaptation with a Relaxed Covariate Shift Assumption
Domain adaptation addresses learning tasks where training is performed on data from one domain whereas testing is performed on data belonging to a different but related domain. Assumptions about the relationship between the source and target domains should lead to tractable solutions on the one hand, and be realistic on the other hand. Here we propose a generative domain adaptation model that a...
متن کاملDirect Density Ratio Estimation for Large-scale Covariate Shift Adaptation
Covariate shift is a situation in supervised learning where training and test inputs follow different distributions even though the functional relation remains unchanged. A common approach to compensating for the bias caused by covariate shift is to reweight the training samples according to importance, which is the ratio of test and training densities. We propose a novel method that allows us ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2920486